标王 热搜: 浙江  盐酸  白藜芦醇  氨基  技术  吡格列酮  吡啶  中间体  制药设备  骨科  原料药  前景广阔  武汉  中成药“避风港”或步其后尘  试剂  机构悄悄潜伏“创新药” 
 
当前位置: 首页 » 资讯 » 前沿科技 » 正文

科学家开发出数学模型准确预测乳腺癌!

放大字体  缩小字体 发布日期:2018-05-22  浏览次数:92
    一组来自考纳斯科技大学(KTU)的研究人员正在开发数学方法用于诊断乳腺癌。通过使用深度学习,研究人员试图教会电脑识别恶性肿瘤部位,这可以将乳腺癌诊断过程部分自动化,同时提高准确率。

    2014年,欧洲约有9.35万人死于乳腺癌,其中大部分是女性(92500)。而在女性中,乳腺癌造成的死亡占3.7%。根据WHO的数据,每年全球有超过100万人被确诊患乳腺癌。而国际医疗专业团队则警告这种癌症的发病率在逐年上升,过去15年立陶宛的发病率上升了75%。

    为了更好地治疗病人,早期诊断是关键。“癌症诊断过程中医生通常依靠视觉信息——分析组织影像以确定病灶的恶性程度。这个过程很耗时间,而且还可能发生误诊,而误诊对癌症患者而言是致命的。通过开发用于诊断的数学模型,我们想将诊断过程自动化,以此将误诊率降到最低。”KTU的博士后研究员Tomas Lesmantas博士说道。

    为了诊断乳腺癌,他引入了一种由深度学习之父、英国科学家Geoffrey Hinton创立的神经网络方法。Iemantas博士及其博士后合作导师Robertas Alzbutas教授分析了波尔图大学提供的一百余张乳腺组织的微观图像,包括四种:非肿瘤组织、非恶性肿瘤组织、非侵入性癌和侵入性癌。目的就是设计一种数学模型用于区分以上四种组织。

    “初步结果很鼓舞人心——我们的准确率达到了85%。”KTU研究人员说道。

    他将在葡萄牙举行的15届影像分析和识别大会上展示他们的结果。Iemantas表示,尽管近年来数学方法在医学领域的应用已经有所扩展,研究人员也在训练计算机诊断肺部损伤、识别淋巴结转移灶以及脑部肿瘤定位,但是在短期内肿瘤诊断还是不可能完全自动化的。

    “这些研究并不仅仅是在理论水平进行的,一些研究中的方法已经在临床应用。尽管数字化不可能取代人类判断,但是我相信自动化计算机诊断将变得越来越常见,将帮助我们更准确地诊断某些癌症。”(生物谷)
 
 
[ 资讯搜索 ]  [ 加入收藏 ]  [ 告诉好友 ]  [ 打印本文 ]  [ 关闭窗口 ]

 

 
推荐图文
推荐资讯
点击排行
 
网站首页 | 展会信息 | 欢迎扫码下载展会杂志电子版 | 帮助中心 | 国际注册与认证 | 服务指南 | 黄金板块 | 本站服务 | 联系方式 | 版权隐私 | 使用协议 | 网站地图 | 排名推广 | 广告服务 | 网站留言 | RSS订阅